The progress of Stem cells in the treatment of diabetes mellitus type 1

Main Article Content

Nihad Elsadig Babiker Alsadig Gassoum Nahla E. Abdelraheem Mohamed Abdelrahman Arbab Sawsan Ahmed Hamed ALDeaf Mohamad Ahmed Ali El-Sheikh Hassan Hussein Musa

Abstract

Diabetes mellitus is a major health problem in the world. The total number of diabetic’s population is increasing every year. Currently used treatment of diabetes mellitus type 1 by controlling the blood sugar levels, doesn’t prevent complications which associate diabetes. The stem cell based therapy for diabetes aims to replace the diseased or lost cells of the pancreas with new cells using pluripotent or multipotent stem cells. Scientists successfully produced insulin secreting cell from different types of stem cells. In this article we briefly reviewed the progress made in the stem cell research for diabetes treatment.

References

Aanstoot, H.-J., Anderson, B.J., Daneman, D., Danne, T., Donaghue, K., Kaufman, F., Réa, R.R., and Uchigata, Y. (2007). The global burden of youth diabetes: Perspectives and potential: A charter paper. Pediatr Diabetes 8, 4-40.
Abdulazeez, S.S. (2015). Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharmaceutical Journal 23, 333-340.
Agarwal, A., and Brayman, K.L. (2012). Update on islet cell transplantation for type 1 diabetes. Paper presented at: Seminars in interventional radiology (Thieme Medical Publishers).
Alipio, Z., Liao, W., Roemer, E.J., Waner, M., Fink, L.M., Ward, D.C., and Ma, Y. (2010). Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proceedings of the National Academy of Sciences 107, 13426-13431.
Armita Mahdavi Gorabi, A., Farhad, Souri, Mona, Jahandideh, Kazempor (2016). Mesenchymal Stem Cells (M.S.C.) Effect in Streptozotocin (STZ) Induced Type I Diabetic Rats. The Caspian Sea Journal 1, 91-95.
Atkinson, M.A., and Maclaren, N.K. (1994). The pathogenesis of insulin-dependent diabetes mellitus. New England Journal of Medicine 331, 1428-1436.
Azarpira, N., Aghdai, M.H., Nikeghbalian, S., Geramizadeh, B., Darai, M., Esfandiari, E., Bahador, A., Kazemi, K., Al-Abdullah, I.H., and Malek-Hosseini, S.A. (2014). Human islet cell isolation: the initial step in an islet transplanting program in Shiraz, Southern Iran. Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation 12, 139-142.
Bennet, W., Groth, C.-G., Larsson, R., Nilsson, B., and Korsgren, O. (2000). Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Upsala journal of medical sciences 105, 125-133.
Bennet, W., Sundberg, B., Groth, C.-G., Brendel, M.D., Brandhorst, D., Brandhorst, H., Bretzel, R.G., Elgue, G., Larsson, R., and Nilsson, B. (1999). Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48, 1907-1914.
Bhartiya, D. (2016). Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles. The Indian journal of medical research 143, 267.
Bieback, K., Kern, S., Klüter, H., and Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem cells 22, 625-634.
Bottazzo, G., Florin-Christensen, A., and Doniach, D. (1974). Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. The Lancet 304, 1279-1283.
Calafiore, R., and Basta, G. (2015). Stem cells for the cell and molecular therapy of type 1 diabetes mellitus (T1D): the gap between dream and reality. American journal of stem cells 4, 22.
Daneman, D. (2006). Type 1 diabetes. The Lancet 367, 847-858.
Dang, L.T.-T., Bui, A.N.-T., Pham, V.M., Phan, N.K., and Van Pham, P. (2015). Production of islet-like insulin-producing cell clusters in vitro from adiposederived stem cells. Biomedical Research and Therapy 2, 1-9.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. cytotherapy 8, 315-317.
Dorner, M., Pinget, M., and Brogard, J.M. (1977). [Essential labile diabetes (author's transl)]. MMW, Munchener medizinische Wochenschrift 119, 671-674.
Ende, N., Chen, R., and Reddi, A.S. (2004). Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochemical and biophysical research communications 321, 168-171.
Francois, S., Usunier, B., Douay, L., Benderitter, M., and Chapel, A. (2014). Long-Term Quantitative Biodistribution and Side Effects of Human Mesenchymal Stem Cells (hMSCs) Engraftment in NOD/SCID Mice following Irradiation. Stem cells international 2014, 939275.
Gardner, D., and Shoback, D. (2011). Pancreatic hormones and diabetes mellitus. Greenspan's Basic & Clinical Endocrinology 9th ed New York, NY: The McGraw-Hill Companies.
Goswami, S.K., Vishwanath, M., Gangadarappa, S.K., Razdan, R., and Inamdar, M.N. (2014). Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction. Pharmacognosy magazine 10, S581-587.
Hashemian, S.J., Kouhnavard, M., and Nasli-Esfahani, E. (2015). Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. Journal of diabetes research 2015.
He, D., Wang, J., Gao, Y., and Zhang, Y. (2011). Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. International journal of molecular medicine 28, 1019-1024.
Ianus, A., Holz, G.G., Theise, N.D., and Hussain, M.A. (2003). In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. The Journal of clinical investigation 111, 843-850.
Ilic, D., Devito, L., Miere, C., and Codognotto, S. (2015). Human embryonic and induced pluripotent stem cells in clinical trials. British medical bulletin 116, 19-27.
Jang, J., Yoo, J.E., Lee, J.A., Lee, D.R., Kim, J.Y., Huh, Y.J., Kim, D.S., Park, C.Y., Hwang, D.Y., Kim, H.S., et al. (2012). Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Experimental & molecular medicine 44, 202-213.
Kadam, S., Muthyala, S., Nair, P., and Bhonde, R. (2010). Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 7, 168-182.
Kanemura, H., Go, M.J., Shikamura, M., Nishishita, N., Sakai, N., Kamao, H., Mandai, M., Morinaga, C., Takahashi, M., and Kawamata, S. (2014). Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PloS one 9, e85336.
Koblas, T., Harman, S.M., and Saudek, F. (2005). The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud 2, 228-234.
Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., and Cunningham, J. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature biotechnology 26, 443-452.
Larsen, J.L. (2004). Pancreas transplantation: indications and consequences. Endocrine Reviews 25, 919-946.
Li, M., and Ikehara, S. (2014). Stem cell treatment for type 1 diabetes. Frontiers in cell and developmental biology 2, 9.
Meirelles Junior, R.F., Salvalaggio, P., and Pacheco-Silva, A. (2015). Pancreas transplantation: review. Einstein (Sao Paulo, Brazil) 13, 305-309.
Nagamura-Inoue, T., and He, H. (2014). Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells 6, 195-202.
Naujok, O., Francini, F., Picton, S., Jörns, A., Bailey, C.J., and Lenzen, S. (2008). A new experimental protocol for preferential differentiation of mouse embryonic stem cells into insulin-producing cells. Cell transplantation 17, 1231-1242.
O’Gara, P.T., Kushner, F.G., Ascheim, D.D., Casey, D.E., Chung, M.K., De Lemos, J.A., Ettinger, S.M., Fang, J.C., Fesmire, F.M., and Franklin, B.A. (2013). 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. Circulation 127, e362-e425.
Organization, W.H., and Organization, W.H. (2011). Diabetes fact sheet No. 312. URL: http://www who int/mediacentre/factsheets/fs312/en/index html [accessed 2013-03-01][WebCite Cache].
Powers, A.C. (2008). Insulin therapy versus cell-based therapy for type 1 diabetes mellitus: what lies ahead? Nature clinical practice Endocrinology & metabolism 4, 664-665.
Prabakar, K.R., Domínguez-Bendala, J., Molano, R.D., Pileggi, A., Villate, S., Ricordi, C., and Inverardi, L. (2012). Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell transplantation 21, 1321-1339.
Raikwar, S.P., Kim, E.-M., Sivitz, W.I., Allamargot, C., Thedens, D.R., and Zavazava, N. (2015). Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PloS one 10, e0116582.
Risérus, U., Willett, W.C., and Hu, F.B. (2009). Dietary fats and prevention of type 2 diabetes. Progress in lipid research 48, 44-51.
Rother, K.I. (2007). Diabetes treatment—bridging the divide. The New England journal of medicine 356, 1499.
Sarwar, N., Gao, P., Seshasai, S.R., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D.A., Selvin, E., Stampfer, M., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England) 375, 2215-2222.
Seeberger, K.L., Dufour, J.M., Shapiro, A.M.J., Lakey, J.R., Rajotte, R.V., and Korbutt, G.S. (2006). Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Laboratory investigation 86, 141-153.
Slack, J.M. (2000). Stem cells in epithelial tissues. Science 287, 1431-1433.
Soltesz, G., Patterson, C., and Dahlquist, G. (2007). Worldwide childhood type 1 diabetes incidence–what can we learn from epidemiology? Pediatric diabetes 8, 6-14.
Soria, B., Roche, E., Berna, G., León-Quinto, T., Reig, J.A., and Martín, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157-162.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 126, 663-676.
Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, A.C., and Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry 283, 31601-31607.
Teo, A.K., Windmueller, R., Johansson, B.B., Dirice, E., Njolstad, P.R., Tjora, E., Raeder, H., and Kulkarni, R.N. (2013). Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. Journal of Biological Chemistry 288, 5353-5356.
Tsai, P.-J., Wang, H.-S., Shyr, Y.-M., Weng, Z.-C., Tai, L.-C., Shyu, J.-F., and Chen, T.-H. (2012). Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. Journal of biomedical science 19, 47.
Volarevic, V., Arsenijevic, N., Lukic, M.L., and Stojkovic, M. (2011). Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29, 5-10.
Welsh, M., Welsh, N., Nilsson, T., Arkhammar, P., Pepinsky, R.B., Steiner, D.F., and Berggren, P.-O. (1988). Stimulation of pancreatic islet beta-cell replication by oncogenes. Proceedings of the National Academy of Sciences 85, 116-120.
Wu, L.-F., Wang, N.-N., Liu, Y.-S., and Wei, X. (2009). Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A 15, 2865-2873.
Xu, J., Liao, W., Gu, D., Liang, L., Liu, M., Du, W., Liu, P., Zhang, L., Lu, S., and Dong, C. (2009). Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cellular Physiology and Biochemistry 23, 415-424.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., and Stewart, R. (2007). Induced pluripotent stem cell lines derived from human somatic cells. science 318, 1917-1920.
Zhang, D., Jiang, W., Liu, M., Sui, X., Yin, X., Chen, S., Shi, Y., and Deng, H. (2009). Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell research 19, 429-438.
Zhao, Q., Ren, H., and Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy 2, 3-20.

Downloads

Download data is not yet available.

Article Details

How to Cite
BABIKER, Nihad Elsadig et al. The progress of Stem cells in the treatment of diabetes mellitus type 1. Progress in Stem Cell, [S.l.], v. 4, n. 01, p. 175-188, june 2017. ISSN 2199-4633. Available at: <http://www.cellstemcell.org/index.php/PSC/article/view/184>. Date accessed: 23 oct. 2017. doi: https://doi.org/10.15419/psc.v4i01.184.
Section
Reviews