Good manufacturing practice-compliant isolation and culture of human bone marrow mesenchymal stem cells

Main Article Content

Phuc Van Pham Nhan Lu-Chinh Phan Dung Minh Le Phuong Thi-Bich Le Tung Dang-Xuan Tran Ngoc Kim Phan

Abstract

Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into some kinds of mesenchymal cells such as osteoblasts, chondroblasts and adipocytes. These cells were discovered for a long time and considered as the first discovered source of MSCs. BM-MSC transplantation was used to treat some diseases such as bone disease, myocardial infarction, stroke, diabetes mellitus… This study aimed to provide a new method to in vitro primarily culture and secondary culture of BM-MSCs that were compliant with good manufacturing practice for clinical applications. Bone marrow was aspirated from the hip bone using special needles and syringes. Mononuclear cells (MNCs) were isolated from bone marrow by BM-MSC extraction kit. These MNCs were cultured in the commercial medium – MSC-Cult supplemented with 10% activated platelet rich plasma (aPRP) to obtain BM-MSCs. The results showed that 100% samples of bone marrow can be successfully cultured to produce BM-MSCs. Obtained cells exhibited the MSC phenotypes, and maintained the stable and normal karyotype up to 10th passages, and failed to cause tumor in the mouse models. This research provided an advanced protocol for clinical applications of BM-MSCs.

References

Atashi, F., Jaconi, M.E., Pittet-Cuenod, B., and Modarressi, A. (2014). Autologous Platelet-Rich Plasma: A Biological Supplement to Enhance Adipose-Derived Mesenchymal Stem Cell Expansion. Tissue engineering Part C, Methods 10.1089/ten.TEC.2014.0206.
Brooke, G., Rossetti, T., Pelekanos, R., Ilic, N., Murray, P., Hancock, S., Antonenas, V., Huang, G., Gottlieb, D., Bradstock, K., et al. (2009). Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. British journal of haematology 144, 571-579.
Chambers, D.C., Enever, D., Ilic, N., Sparks, L., Whitelaw, K., Ayres, J., Yerkovich, S.T., Khalil, D., Atkinson, K.M., and Hopkins, P.M. (2014). A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology (Carlton, Vic) 19, 1013-1018.
Chan-Il, C., Young-Don, L., Heejaung, K., Kim, S.H., Suh-Kim, H., and Kim, S.S. (2013). Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell transplantation 22, 855-870.
Choudhery, M.S., Badowski, M., Muise, A., and Harris, D.T. (2013). Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 15, 330-343.
Danielyan, L., Beer-Hammer, S., Stolzing, A., Sch Fer, R., Siegel, G., Fabian, C., Kahle, P., Biedermann, T., Lourhmati, A., Buadze, M., et al. (2014). Intranasal delivery of bone marrow derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer?s and Parkinson?s disease. Cell transplantation 10.3727/096368914x684970.
Danielyan, L., Schafer, R., von Ameln-Mayerhofer, A., Bernhard, F., Verleysdonk, S., Buadze, M., Lourhmati, A., Klopfer, T., Schaumann, F., Schmid, B., et al. (2011). Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation research 14, 3-16.
de Carvalho Rodrigues, D., Asensi, K.D., Vairo, L., Azevedo-Pereira, R.L., Silva, R., Rondinelli, E., Goldenberg, R.C., Campos de Carvalho, A.C., and Urmenyi, T.P. (2012). Human menstrual blood-derived mesenchymal cells as a cell source of rapid and efficient nuclear reprogramming. Cell transplantation 21, 2215-2224.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.
Ezquer, F., Ezquer, M., Simon, V., Pardo, F., Yanez, A., Carpio, D., and Conget, P. (2009). Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 15, 1354-1365.
Ferro, F., Spelat, R., and Baheney, C.S. (2014). Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods in molecular biology (Clifton, NJ) 1210, 91-115.
Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230-247.
Huang, J., Sha, H., Wang, G., Bao, G., Lu, S., Luo, Q., and Tan, Q. (2014). Isolation and characterization of ex vivo expanded mesenchymal stem cells obtained from a surgical patient. Molecular medicine reports 10.3892/mmr.2014.2892.
Iudicone, P., Fioravanti, D., Bonanno, G., Miceli, M., Lavorino, C., Totta, P., Frati, L., Nuti, M., and Pierelli, L. (2014). Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells. Journal of translational medicine 12, 28.
Kebriaei, P., Isola, L., Bahceci, E., Holland, K., Rowley, S., McGuirk, J., Devetten, M., Jansen, J., Herzig, R., Schuster, M., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 15, 804-811.
Lee, H.K., Lim, S.H., Chung, I.S., Park, Y., Park, M.J., Kim, J.Y., Kim, Y.G., Hong, J.T., Kim, Y., and Han, S.B. (2014). Preclinical efficacy and mechanisms of mesenchymal stem cells in animal models of autoimmune diseases. Immune network 14, 81-88.
Lee, J.Y., Nam, H., Park, Y.J., Lee, S.J., Chung, C.P., Han, S.B., and Lee, G. (2011). The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In vitro cellular & developmental biology Animal 47, 157-164.
Leite, C., Silva, N.T., Mendes, S., Ribeiro, A., de Faria, J.P., Lourenco, T., Dos Santos, F., Andrade, P.Z., Cardoso, C.M., Vieira, M., et al. (2014). Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PloS one 9, e111059.
Li, T., Zhu, J., Ma, K., Liu, N., Feng, K., Li, X., Wang, S., and Bie, P. (2013). Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. The Journal of surgical research 184, 1161-1173.
Murphy, M.B., Blashki, D., Buchanan, R.M., Yazdi, I.K., Ferrari, M., Simmons, P.J., and Tasciotti, E. (2012). Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials 33, 5308-5316.
Narbona-Carceles, J., Vaquero, J., B, S.S., Forriol, F., and Fernandez-Santos, M.E. (2014). Bone marrow mesenchymal stem cell aspirates from alternative sources Is the knee as good as the iliac crest? Injury 45 Suppl 4, S42-47.
Odabas, S., Elcin, A.E., and Elcin, Y.M. (2014). Isolation and characterization of mesenchymal stem cells. Methods in molecular biology (Clifton, NJ) 1109, 47-63.
Papadopoulou, A., Yiangou, M., Athanasiou, E., Zogas, N., Kaloyannidis, P., Batsis, I., Fassas, A., Anagnostopoulos, A., and Yannaki, E. (2012). Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis. Annals of the rheumatic diseases 71, 1733-1740.
Pham, P.V., Vu, N.B., Pham, V.M., Truong, N.H., Pham, T.L., Dang, L.T., Nguyen, T.T., Bui, A.N., and Phan, N.K. (2014). Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. Journal of translational medicine 12, 56.
Robey, P.G., Kuznetsov, S.A., Ren, J., Klein, H.G., Sabatino, M., and Stroncek, D.F. (2014). Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone 10.1016/j.bone.2014.07.020.
Vaes, B., Van't Hof, W., Deans, R., and Pinxteren, J. (2012). Application of MultiStem((R)) Allogeneic Cells for Immunomodulatory Therapy: Clinical Progress and Pre-Clinical Challenges in Prophylaxis for Graft Versus Host Disease. Frontiers in immunology 3, 345.
Vainshtein, J.M., Kabarriti, R., Mehta, K.J., Roy-Chowdhury, J., and Guha, C. (2014). Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. International journal of radiation oncology, biology, physics 89, 786-803.
Van Pham, P., Bui, K.H., Ngo, D.Q., Vu, N.B., Truong, N.H., Phan, N.L., Le, D.M., Duong, T.D., Nguyen, T.D., Le, V.T., et al. (2013). Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem cell research & therapy 4, 91.
Van Pham, P., Vu, N.B., Phan, N.L.-C., Le, D.M., Truong, N.C., Truong, N.H., Bui, K.H.-T., and Phan, N.K. (2014). Good manufacturing practice-compliant isolation and culture of human adipose derived stem cells. Biomed Res Ther 1, 1-9.
Veronesi, F., Giavaresi, G., Tschon, M., Borsari, V., Nicoli Aldini, N., and Fini, M. (2013). Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem cells and development 22, 181-192.

Downloads

Download data is not yet available.

Article Details

How to Cite
PHAM, Phuc Van et al. Good manufacturing practice-compliant isolation and culture of human bone marrow mesenchymal stem cells. Progress in Stem Cell, [S.l.], v. 1, n. 01, p. 18-27, dec. 2014. ISSN 2199-4633. Available at: <http://www.cellstemcell.org/index.php/PSC/article/view/117>. Date accessed: 24 sep. 2017. doi: https://doi.org/10.15419/psc.v1i01.117.
Section
Research Articles